Na początku trzeba skalibrować system, tzn. nauczyć go, jakie sygnały wskazują na zaburzenia procesu fotosyntezy związane z niedoborem poszczególnych składników mineralnych. Każdy niedobór można scharakteryzować odpowiednim sygnałem mierzonym fluorymetrem.
"Kalibrowanie systemu polega na stosowaniu jednocześnie dwóch metod: pierwsza to bezinwazyjny pomiar sygnału fluorescencji chlorofilu fluorymetrem, a druga - przeprowadzanie analizy chemicznej roślin. Przykładowo: w kombinacji doświadczalnej nie podawaliśmy roślinom fosforu i mierzyliśmy wysyłane przez nie sygnały. W innej kombinacji nie podawaliśmy innego składnika i znów sprawdzaliśmy, jaki sygnał pojawi się tym razem. Potem wszystkie wyniki «wpuszczaliśmy» do tzw. czarnej skrzynki, w tym przypadku sztucznych sieci neuronowych, które nauczyliśmy identyfikować, jakie sygnały są wskaźnikami danego niedoboru" - tłumaczy prof. Kalaji. Proponowana metoda jest nieinwazyjna, szybka, tania i o znacznym stopniu wiarygodności. Jej niewątpliwą zaletą jest też to, że można ją zastosować dla wszystkich organizmów posiadających chlorofil.
EKG chloroplastu
Sygnały fluorescencji pochodzą z fotosystemu II (PSII) znajdującego się w chloroplastach. PSII jest enzymem składającym się z barwników asymilacyjnych i różnych białek. Jest bardzo czuły i wysyła sygnał analogiczny do tego, jaki wysyła serce człowieka. Filmy krótkometrażowe, które nakręcił prof. Kalaji wraz ze studentami i studentkami Akademii Sztuk Pięknych w Warszawie, pokazują że rośliny wyraźnie reagują na docierające do nich bodźce z otoczenia (dotyk, dźwięk, obecność człowieka, wzrost temperatury, zasolenie, obecność metali ciężkich) w ten sposób, że standardowe wartości sygnałów fluorescencji chlorofilu obniżają się lub wzrastają. Reakcje te można następnie odczytywać podobnie jak elektrokardiogram - czyli swoisty zapis pulsu serca roślin.
Dzięki pomiarom sygnału wysyłanego przez fotosystem II (PSII) naukowcy uzyskują informacje w momencie, kiedy roślina jest poddawana działaniu określonego czynnika stresowego. Następnie mogą zanalizować poszczególne wskazania fluorymetru i podjąć odpowiednie działania, aby wyeliminować lub w znacznym stopniu ograniczyć niekorzystne oddziaływanie.
Metoda pozwala także przewidywać zmiany i zapobiegać im, zanim pojawią się wizualne objawy. Do tej pory w rolnictwie reagowano dopiero wtedy, gdy zmiany było widać "gołym okiem" - na ogół w momencie, kiedy stresor spowodował już istotne i nieodwracalne zmiany w wyglądzie i funkcjonowaniu całej rośliny. Teraz nie trzeba czekać - opracowany system pozwala w rzeczywistym czasie monitorować stan fizjologiczny roślin. Dzięki temu można zainterweniować na możliwie wczesnym etapie i znaczne ograniczyć negatywne następstwa oddziaływania czynnika stresowego.
Szklarnia jak dyskoteka
Dalszym etapem badań było nauczenie programu, aby na podstawie wskazań pomiarowych informował o danym problemie i jego rozwiązaniu. "System przetwarza informację i wyświetla określony komunikat np. o tym, że w otoczeniu rośliny jest za duże lub za małe naświetlenie lub widmo światła jest nieodpowiednie" - tłumaczy prof. Kalaji.
Ujawnia też dalsze plany badawcze: "Istnieje w języku angielskim pojęcie «plant talk» - mowy roślin. Rośliny nieustannie komunikują się między sobą, a naukowcy uczą system słuchać tej mowy, sami próbują ją zrozumieć i odpowiadać na nią". Rośliny w szklarniach rosną w warunkach stworzonych przez producentów. Tymczasem każda z nich może mieć swoje indywidualne potrzeby zależne od różnych czynników, np. pory roku albo dnia. "Zamierzamy dać roślinom narzędzie w postaci systemu samokontroli do tego, by mogły samodzielnie sterować warunkami, w jakich przebywają, np. intensywnością i jakością światła."
W Katedrze Fizjologii Roślin SGGW powstał prototyp urządzenia. Póki co pozwala kontrolować intensywność światła: roślina, wysyłając sygnał fluorescencji chlorofilu, steruje systemem oświetleniowym, tak by natężenie i barwa światła były ustawione na optymalnym dla niej poziomie. Docelowo taki system ma być trwale montowany w szklarniach.
"Szklarnia przyszłości to dyskoteka - wyjaśnia prof. Kalaji. - Światła LED zmieniają się na niebieskie, czerwone i białe w zależności od potrzeb: na przykład gdy na zewnątrz szklarni jest pochmurnie lub deszczowo. Oddanie głosu roślinom wydaje się o tyle proste, że zazwyczaj w jednej szklarni uprawia się jedną odmianę. Sygnał będzie mierzony z kilku punktów i uśredniony tak, by uwzględniać potrzeby roślin rosnących zarówno przy szybach (i potencjalnie mających najwięcej światła słonecznego), jak i gdzieś w środku (z przewagą cienia). Trudno zadowolić każdą roślinę, nie mówiąc o każdym liściu - ale staramy się".
SGGW już odczytuje sygnały roślin
System do kontrolowania warunków w otoczeniu roślin lub owoców za pomocą pomiaru sygnałów fluorescencji chlorofilu został opracowany i wdrożony już w kilku miejscach, m.in. w sadach doświadczalnych SGGW (prof. Kalaji współpracował przy tym projekcie z prof. Kazimierzem Tomalą). Jabłka po zbiorze przechowuje się w magazynach, w których panują ściśle określone warunki mające nie dopuścić do psucia się owoców: niska temperatura oraz obniżona zawartość tlenu. Dotychczas jedynym sposobem na sprawdzenie jakości owoców podczas ich przechowywania była analiza fizyczna i organoleptyczna. To wiązało się z koniecznością otwarcia magazynu, wpuszczenia do niego tlenu i podwyższenia temperatury . Potem trzeba było przywrócić odpowiednie warunki - a to powodowało kolejne koszty. Wyżej opisany system działa automatycznie: kontroluje i reguluje dopływ gazu do owoców zgodnie z zapotrzebowaniem.
Prof. Kalaji uważa, że naukowcy i rolnicy muszą gruntownie zmienić swoje podejście do sposobu uprawy roślin. Trzeba wsłuchać się w ich potrzeby, które są bardzo różne na poziomie gatunków i odmian, a także zależą od wielu innych czynników, takich jak faza wzrostu, pora roku i dnia.